Canonical Decompositions of Affine Permutations, Affine Codes, and Split $k$-Schur Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Decompositions of Affine Permutations, Affine Codes, and Split k-Schur Functions

We develop a new perspective on the unique maximal decomposition of an arbitrary affine permutation into a product of cyclically decreasing elements, implicit in work of Thomas Lam [Lam06]. This decomposition is closely related to the affine code, which generalizes the kbounded partition associated to Grassmannian elements. We also prove that the affine code readily encodes a number of basic co...

متن کامل

Affine dual equivalence and k-Schur functions

The k-Schur functions were first introduced by Lapointe, Lascoux and Morse [18] in the hopes of refining the expansion of Macdonald polynomials into Schur functions. Recently, an alternative definition for k-Schur functions was given by Lam, Lapointe, Morse, and Shimozono [17] as the weighted generating function of starred strong tableaux which correspond with labeled saturated chains in the Br...

متن کامل

Expansions of k-Schur Functions in the Affine nilCoxeter Algebra

We give a type free formula for the expansion of k-Schur functions indexed by fundamental coweights within the affine nilCoxeter algebra. Explicit combinatorics are developed in affine type C.

متن کامل

Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions

The k-Young lattice Y k is a partial order on partitions with no part larger than k. This weak subposet of the Young lattice originated [9] from the study of the k-Schur functions s (k) λ , symmetric functions that form a natural basis of the space spanned by homogeneous functions indexed by k-bounded partitions. The chains in the k-Young lattice are induced by a Pieri-type rule experimentally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2248